Авиационная навигация. Общие правила воздушной навигации. Классификация технических средств навигации

По заданной пространственно-временной траектории.

Задачи аэронавигации

    • координат (географических-->широта, долгота; полярных--> азимут , дальность)
    • высота (абсолютная, относительная, истинная)
    • высота над поверхностью Земли (истинная высота полета)
    • курс
    • путевой угол (условный, истинный, магнитный, ортодромический)
    • приборная, истинная, путевая скорость
    • скорость , направление(метеорологическое, навигационное) и угол ветра
    • линия заданного пути (ЛЗП)
    • линейно бокового уклонения (ЛБУ)
    • дополнительная поправка (ДП) (при полете на радиостанцию)
    • боковое уклонение (БУ) (при полете от радиостанции)
    • обратный, прямой пеленг (ОП,ПП) (при полете на/от радиопеленгатор)
  • Контроль и исправление пути: (С выходом на ЛЗП или в ППМ (поворотный пункт маршрута), в зависимости от ЛБУ и ШВТ)
    • по дальности
    • по направлению
  • Прокладка и счисление пути:
    • Прямая
    • Обратная
    • Штилевая
  • Построение оптимальных маршрутов для достижения точки назначени
  • Оперативная коррекция маршрута во время полёта
    • при изменении полётного задания, в том числе при неисправностях в летательном аппарате
    • при возникновении неблагоприятных метеорологических явлений на маршруте
    • во избежание столкновения с другим летательным аппаратом
    • для сближения с другим летательным аппаратом

Определение навигационных элементов летательного аппарата

Для определения навигационных элементов применяются различные технические средства:

  • Геотехнические - позволяют определять абсолютную и относительную высоту полёта, курс летательного аппарата, его местонахождение и так далее).
    • измерители воздушной и путевой скоростей,
    • магнитные и гиромагнитные компасы, гирополукомпасы,
    • оптические визиры ,
    • инерциальные навигационные системы и так далее.
  • Радиотехнические - позволяют определить истинную высоту, путевую скорость, местонахождение летательного аппарата путем измерения различных параметров электромагнитного поля по радиосигналам .
    • радионавигационные системы и так далее.
  • Астрономические - позволяют определять курс и местонахождение летательного аппарата
    • астрономические компасы
    • астроориентаторы и так далее
  • Светотехнические - обеспечивают посадку летательного аппарата в сложных метеорологических условиях и ночью и для облегчения ориентировки.
    • светомаяки.
  • Комплексные навигационные системы - автопилот - могут обеспечить автоматический полёт по всему маршруту и заход на посадку при отсутствии видимости земной поверхности.

Источники

  • Черный М. А., Кораблин В. И. Самолётовождение , Транспорт, 1973, 368 с. битая ссылка

Wikimedia Foundation . 2010 .

  • Космическая навигация
  • Инерциальная навигация

Смотреть что такое "Воздушная навигация" в других словарях:

    Воздушная навигация - комплекс действий экипажа, направленный на достижение наибольшей точности, надежности и безопасности вождения воздушного судна и групп воздушных судов по заданной траектории, а также в целях вывода их по месту и времени на заданные объекты (цели) … Официальная терминология

    Навигация воздушная - Воздушная навигация, аэронавигация наука о методах и средствах вождения воздушного судна по программной траектории. Задачи аэронавигации Определение навигационных элементов летательного аппарата широта, долгота высота НУМ высота над поверхностью… … Википедия

    НАВИГАЦИЯ - (лат. navigatio от navigo плыву на судне), 1) наука о способах выбора пути и методах вождения судов, летательных аппаратов (воздушная навигация, аэронавигация) и космических аппаратов (космическая навигация). Задачи навигации: нахождение… … Большой Энциклопедический словарь

    навигация - и; ж. [лат. navigatio от navigo плыву на судне] 1. Судоходство, мореплавание. Из за обмеления реки н. невозможна. 2. Такое время в году, когда по местным климатическим условиям возможно судоходство. Открытие навигации. Суда в порту ждали начала… … Энциклопедический словарь

    Навигация - В Викисловаре есть статья «навигация» Навигация (лат. navigatio, от лат. navigo плыву на судне): Мореплавание, судоходство Период времени в году, когда по местным климатическим условиям возможно су … Википедия

    навигация Энциклопедия «Авиация»

    навигация - Рис. 1. Определение местоположения ЛА по линиям положения. навигация летательных аппаратов, аэронавигация (от греч. aēr — воздух и лат. navigatio — мореплавание), — наука о методах и средствах вождения летательных аппаратов из… … Энциклопедия «Авиация»

    НАВИГАЦИЯ - (лат. navigatio, от navis корабль) 1) мореплавание. 2) наука об управлении кораблем. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. НАВИГАЦИЯ 1) искусство управления кораблем в открыт. море; 2) время года, в… … Словарь иностранных слов русского языка

    Навигация (морск.) - Навигация (лат. navigatio, от navigo ‒ плыву на судне), 1) мореплавание, судоходство. 2) Период времени в году, когда по местным климатическим условиям возможно судоходство. 3) Основной раздел судовождения, в котором разрабатываются теоретические … Большая советская энциклопедия

    НАВИГАЦИЯ - НАВИГАЦИЯ, и, жен. 1. Наука о вождении судов и летательных аппаратов. Школа навигации. Воздушная н. Межпланетная (космическая) н. 2. Время, в течение к рого возможно судоходство, а также само судоходство. Начало, конец навигации. Н. открыта. |… … Толковый словарь Ожегова

Знание некоторых принципов легко возмещает незнание некоторых фактов

К. Гельвеций

Что такое Аэронавигация?

ответ

Современный термин «аэронавигация», рассматриваемый в узком смысле, имеет два взаимосвязанных значения:

  • некий протекающий в реальности процесс или деятельность людей по достижению определенной цели;
    • Аэронавигация – управление траекторией движения ВС, осуществляемое экипажем в полете . Процесс аэронавигации включает в себя решение трех основных задач:
      • формирование (выбор) заданной траектории;
      • определение местоположения ВС в пространстве и параметров его движения;
      • формирование навигационного решения (управляющих воздействий для вывода ВС на заданную траекторию);
  • наука или учебная дисциплина, изучающая эту деятельность.
    • Аэронавигация как наука и учебная дисциплина. Аэронавигация – прикладная наука о точном, надежном и безопасном вождении ВС из одной точки в другую, о методах применения технических средств навигации.

С какими книгами по аэронавигации лучше ознакомиться для начала?

ответ

Какие приборы обеспечивают процессы аэронавигации в самолёте?

ответ
  • Состав приборов может быть различным, в зависимости от типа ЛА и эпохи его применения. Совокупность таких приборов называют пилотажно-навигационным комплексом (ПНК). Технические средства аэронавигации разделяются на следующие группы:
  • Геотехнические средства . Это средства, принцип действия которых основан на использовании физических полей Земли (магнитного , гравитационного, поля атмосферного давления), либо использовании общих физических законов и свойств (например, свойства инерции). К этой большой и самой древней группе относятся барометрические высотомеры, магнитные и гироскопические компасы , механические часы, инерциальные навигационные системы (ИНС) и т.п.
  • Радиотехнические средства . В настоящее время представляют собой самую большую и самую важную группу средств, являющихся в современной аэронавигации основными для определения как координат ВС , так и направления его движения. Они основаны на излучении и приеме радиоволн бортовыми и наземными радиотехническими устройствами, измерении параметров радиосигнала, который и несет навигационную информацию. В состав этих средств входят радиокомпасы , системы РСБН , VOR , DME , ДИСС и другие.
  • Астрономические средства . Методы определения местоположения и курса корабля с помощью небесных светил (Солнца, Луны и звезд) использовались еще Колумбом и Магелланом. С появлением авиации они были перенесены и в аэронавигационную практику, разумеется, при использовании специально сконструированных для этого технических средств – астрокомпасов , секстантов и ориентаторов. Однако точность астрономических средств была низка, а время, необходимое для определения с их помощью навигационных параметров, достаточно велико, поэтому с появлением более точных и удобных радиотехнических средств астрономические средства оказались за рамками штатного оборудования гражданских ВС , оставаясь лишь на самолетах, выполняющих полеты в полярных районах.
  • Светотехнические средства . Когда-то, на заре авиации, световые маяки, наподобие морских маяков, устанавливали на аэродромах с тем, чтобы ночью пилот издалека смог его увидеть и выйти на аэродром. По мере того, как полеты все больше стали проходить по приборам и в сложных метеоусловиях, такая практика стала сокращаться. В настоящее время светотехнические средства используются главным образом при заходе на посадку. Различные системы светотехнического оборудования позволяют экипажу на конечном этапе захода обнаружить взлетно-посадочную полосу (ВПП) и определить положение ВС относительно нее.

Как разобраться с высотой, давлением, QNE , QFE , QNH и прочим?

ответ
  • Читаем статью Сергея Сумарокова "Альтиметр 2992 "

Где взять маршрут для составления плана полёта?

ответ

Трассы прокладывают наиболее оптимальными путями, стараясь при этом обеспечивать кратчайшие маршруты между аэропортами, и одновременно учитывая необходимость обхода запретных зон (испытательные аэродромы, зоны полетов ВВС, полигоны и т.д.). При этом маршруты проложенные по участкам этих трасс, по возможности приближают к ортодромическим . Трассы перечисляются в специальных сборниках, например Перечень воздушных трасс РФ . В сборниках трасса обозначается списком последовательно перечисленных ППМ . В качестве ППМ используются радиомаяки (VOR , NDB) или просто именованные точки с фиксированными координатами. В графическом представлении трассы нанесены на радионавигационные карты (РНК).

Очень удобный и наглядный сайт для составления маршрутов skyvector.com

  • Если хотите реализм, нужно пользоваться готовыми маршрутами. Например,
  • Маршруты для СНГ на infogate.matfmc.ru
    • имеется аналогичная, но немного устаревшая база -
  • Можно составить самостоятельно по РНК или Перечням воздушных трасс
  • Skyvector.com - очень удобный интерфейс для самостоятельного составления маршрута или анализа существующих трасс
  • Для генерации виртуальных маршрутов существуют специализированные сайты, например:
  • Загляните ещё на эти сайты:

В общем случае маршрут выглядит так: UUEE SID AR CORR2 BG R805 TU G723 RATIN UN869 VTB UL999 KURPI STAR UMMS

Убираем коды аэропортов вылета и прилета (Шереметьево, Минск) , слова SID и STAR обозначающие схемы выхода и захода. Также следует учесть что если между двумя точками отсутствует трасса и данный участок пролегает напрямую (что очень часто встречается), он обозначается знаком DCT.

AR CORR2 BG R805 TU G723 RATIN UN869 VTB UL999 KURPI, где AR, BG, ТU, RATIN, VTB и KURPI - ППМ . Между ними обозначены используемые трассы.

Что такое схемы захода, Jeppessen, SID, STAR и как этим пользоваться?

ответ

Если Вы собираетесь занять к точке завершения снижения определённый эшелон , то вертикальную скорость (Vверт ) определяем через три переменные:

  • путевая скорость (W );
  • высота, которую надо "потерять" (Н );
  • дистанция, на которой будет выполняться снижение.

Как научиться применять РСБН и НАС-1

ответ

Проблемы с РСБН Ан-24РВ Samdim

ответ

Возможные проблемы с РСБН для этого самолёта собраны в Ан-24 FAQ

Основные навигационные параметры в англоязычной терминологии

ответ
  • True North - North Pole, the vertical axis of sectional charts, meridians
  • Magnetic North - Magnetic Pole, earth"s magnetic lines of force affecting the compass.
  • Variation - angular difference between true north and magnetic north. The angle may be to the east or west side of north. Eastern variation is subtracted from true north (Everywhere west of Chicago) and western variation (Everywhere east of Chicago) is added to obtain magnetic course. East is least and West is best: memory aid for whether to add or subtract variation. West of Chicago it is always subtracted.
  • Isogonic lines - Magenta dashed lines on sectional showing variation. VOR roses have variation applied so that variation can be determined by measuring the angle of the North arrow on the rose from a vertical line.
  • Deviation - Compass error. A compass card in the airplane tells the amount of error to be applied to magnetic course to obtain compass course. Make a copy to keep at home for planning purposes.
  • True Course - The line drawn on the map. Draw multiple lines with spaces //// from airport center to airport center. Multiple lines permit chart features to be read.
  • Magnetic Course - True Course (TC) +/- variation = Magnetic Course. Put Magnetic Course on sectional for use while flying. This course determines hemispheric direction for correct altitude over 3000" AGL.
  • Compass Course - Magnetic Course minus deviation gives Compass Course. The difference is usually only a few degrees.
  • Course - A route which has no wind correction applied
  • Heading - a route on which wind correction has been applied to a course.
  • True Heading - angular difference from true course, the line on the chart, caused by the calculated wind correction angle (WCA ).
  • Magnetic Heading - angular difference from magnetic course caused by wind correction angle; also, obtained by applying variation to true heading.
  • Compass Heading - angular difference from compass course caused by wind correction angle; also, obtained by applying deviation to magnetic heading. If wind is AS computed, this is the direction you fly.
  • True airspeed - Indicated airspeed corrected for pressure, temperature, and instrument error. This is found in the aircraft manual. Cessna is overly optimistic in its figures.
  • Ground speed - actual speed over the ground. This is the speed on which you base your ETA"s
  • Wind Correction angle - angular correction in aircraft heading required to compensate for drift caused by wind. Correctly computed it will allow the aircraft to track the line drawn on the chart.
  • Indicated altitude - Altimeter reading with Kollsman window set for local pressure and corrected for instrument error.
  • Pressure altitude - altimeter reading with Kollsman window set for 29.92. Used for density altitude and true airspeed computations.) Temperature is not used in determining pressure altitude.
  • True Altitude - distance above datum plane of sea level
  • Density Altitude - Pressure altitude corrected for temperature. This is the altitude that determines aircraft performance.

В симуляторе неправильно отображается... (день, ночь, время, Луна, звёзды, освещение дорог)

  • смена дня и ночи
    • на обсуждения корректной смены дня, ночи, времени...
    • И если хотите реализма, никогда не ставьте никаких FS RealTime, TzFiles и пр. Симулятор отображает движение светил и освещённость по реальным астрономическим законам. Вот, например,
  • время
    • Реалистичные бортовые часы . В частности, не переключаются самопроизвольно по часовым поясам.
  • смена фаз Луны
    • RealMoon HD Реалистичные текстуры Луны (FS2004 , FSX)
    • на сайт
  • звёздное небо
    • Читаем статью "Навигационные светила ". В конце приведены ссылки помогающие сделать реалистичный вид звёздного неба в FS2004. Это производится заменой файла stars.dat.

Intensity = 230 NumStars = 400 Constellations = 0

  • дороги ночью светятся

Находим у себя файлы по этому пути: Твой диск:\Твоя папка сима\Scenery\World\texture\

Воздушная навигация

Лекция №2. Сведения о форме и размерах Земли………………………………7

Лекция №3. Определение относительных координат ВС……………………...16

Лекция №4. Штурманская подготовка к полету………………………………..22

Лекция №5. Общие правила воздушной навигации……………………………25

Лекция №6. Обеспечение безопасности полетов в навигационном отношении. Требования к содержанию навигационного обеспечения

полетов……………………………………………………………..29

Лекция №7. Применение курсовых систем…………………………………….37

Лекция №8. Визуальная ориентировка…………………………………………41

Лекция №9. Применение доплеровского измерителя путевой скорости и угла сноса. Навигационные характеристики ДИСС, принцип измерения путевой скорости, угла сноса с помощью ДИСС. Курсо- доплеровское измерение координат ВС, курсо - доплеровский навигационный комплекс…………………………………………47

Лекция №10. Неавтономные системы навигации………………………………51

Лекция №11. Дальномерные радионавигационные системы…………………..59

Лекция №12. Применение угломерно-дальномерных навигационных систем65

Лекция №13. Применение радиолокационной станции в полёте……………..69

Лекция №14. Спутниковые системы радионавигации………………………….75

Список использованной литературы……………………………………………..79

Лекция №1.

Основные навигационные понятия и определения

«Воздушная навигация» - наука о вождении воздушных судов по программной траектории.

Полет является сложным движением самолета в воздухе. Его можно разложить на поступательное движение центра масс и угловое движение вокруг центра масс. При описании положения самолета в процессе его поступательного движения используется ряд точек и линий. Они служат основой для ведения навигационных понятий, непосредственно связанных с движением центра масс самолета. К ним относятся: пространственное место самолета (ПМС), место самолета (МС), траектория полета (ТП), линия пути (ЛП).

Пространственное место самолета - точка пространства, в которой в данный момент находится центр масс самолета.

Место самолета – точка на земной поверхности, в которую в данный момент проектируется центр масс самолета. Пространственное место самолета и место самолета могут быть заданными и фактическими.

Траектория полета - пространственная линия, описываемая центром масс самолета при движении. Она может быть заданной, требуемой и фактической. Под пространственно - временной траекторией полета понимают траекторию полета, заданную не только в пространстве , но и во времени. Заданная пространственно- временная траектория называется программной.

Линия пути - это проекция траектории полета самолета на поверхность Земли. Проекция программной траектории полета на поверхность Земли называется линией заданного пути (ЛЗП). Линия, по которой должен пролететь самолет, называется маршрутом полета.

Профилем полета – называется проекция программной траектории на вертикальную плоскость, проведенную через развернутый маршрут полета в прямую линию. Проекция на земную поверхность фактической траектории полета самолета называется линией фактического пути (ЛФП). Вдоль маршрутов устанавливаются ВТ и МВП, представляющие собой ограниченные по высоте и ширине коридоры в воздушном пространстве.

ВТ - коридор в воздушном пространстве, ограниченный по высоте и ширине, предназначенный для выполнения полетов воздушными судами всех ведомств, обеспеченный трассовыми аэродромами и оборудованный средствами радионавигации, контроля и управления воздушным движением.

МВП - коридор в воздушном пространстве, ограниченный по высоте и ширине и предназначенный для выполнения полетов воздушными судами при осуществлении местных воздушных сообщений.

При решении ряда навигационных задач могут применяться несколько координатных систем. В общем случае их выбор и применение зависят от характера технических средств навигации и возможностей вычислительных устройств. Положение МПС и МС в любой системе определяется координатами, которые определяются линейными или угловыми величинами. В навигации к наиболее употребительным геоцентрическим системам относятся: географическая (астрономическая и геодезическая), нормальная сферическая , ортодромическая и экваториальная .

В качестве основных географических систем используются: прямоугольные правые системы координат (нормальная земная и стартовая), биполярные (плоская и сферическая), гиперболическая и горизонтальная .

При проектировании физической поверхности Земли на поверхность геоида используется астрономическая система координат. Координатами место самолета в этой системе являются:

Географическая система координат:


  • географическая широта  г - двугранный угол, заключенный между плоскостью экватора и нормалью (отвесной линией) к поверхности эллипсоида (геоида) в данной точке М (измеряется от экватора к полюсам от 0 о до 90 о);

  • географическая долгота  г – двугранный угол, заключенный между плоскостями начального (гринвичского) меридиана и меридиана данной точки М. Измеряется от 0 о до 180 о к востоку и западу (при решении некоторых задач от 0 о до 360 о к востоку).
Нормальная система координат:

  • нормальная сферическая широта  - угол между плоскостью экватора и направлением из центра земного шара в точку, являющуюся изображением соответствующей точки эллипсоида. Измеряется центральным углом или дугой меридиана в тех же пределах. Что и географическая широта;

  • нормальная сферическая долгота  - двугранный угол между плоскостью начального (гринвичского меридиана) и плоскостью меридиана данной точки. Измеряется либо центральным углом в плоскости экватора либо дугой экватора от начального меридиана до меридиана данной точки в тех же пределах, что и географическая долгота.
Физическое состояние воздушной среды, а также направление ее перемещения относительно земной поверхности оказывают существенное влияние на траекторию движения самолета в любой системе координат. Для оценки движения самолета по траектории используются геометрические и механические величины, характеризующие пространственное положение самолета, скорость и направление его движения в некоторый момент времени. Их принято называть навигационными элементами полета и подразделять на навигационные элементы и движения.

Высота полета - это расстояние по вертикали от некоторого уровня, принятого от начала отсчета , до самолета.

Элементами второй группы являются: путевая скорость, путевой угол, угол сноса, воздушная скорость, курс и вертикальная скорость.

Скорость полета самолета определяют как относительно воздушной среды, окружающий самолет, так и относительно земной поверхности.

Курсом самолета γ – называется угол в горизонтальной плоскости м
ежду направлением, принятым за начало отсчета 1 в точке местоположения самолета, и проекцией на эту плоскость его продольной оси 2 (рис. 1.7).

Путевой скоростью полета называется скорость перемещения по земной поверхности МС, направленная по касательной к линии пути 2 .

Путевым углом называется угол между направлением, принятым за начало отсчета и линией пути (вектором путевой скорости W). Он также как и курс отчитывается от начала отсчета по часовой стрелке от 0 о до 360 о.

Угол сноса  - самолета называется угол между вектором воздушной скорости и вектором путевой скорости в горизонтальной плоскости. Он считается положительным, если вектор путевой скорости расположен правее вектора воздушной скорости, отрицательным – если левее.

Вертикальной скоростью W в называется вертикальная составляющая вектора полной скорости поступательного перемещения самолета относительно Земли W (рис. 1.7) .

Рассмотренные выше навигационные элементы полета могут быть заданными, фактическими и требуемыми. Например, линии фактического пути - фактический путевой угол , линии заданного пути - заданный путевой угол, а линии требуемого пути - требуемый путевой угол.

Постановка навигационной задачи основывается на определении программных, фактических и требуемых значений навигационно- пилотажных параметров относительно воздушной среды и земной поверхности, характеризующих соответствующие траектории полета.

Полету любого назначения предшествует расчет программной траектории и составление (разработка) заданной навигационной программы полета, рассчитанная программная траектория, обеспечивающая наиболее безопасный и экономический полет, может быть задана аналитически или графически в различных системах координат. Аналитически она выражается конечными уравнениями движения центра масс самолета, которые в широко распространенной ортодромической прямоугольной системе координат имеют вид:

(1.9)

где Z з, S з, H з – заданные (программные) ортодромические прямоугольные координаты ПМС в заданный момент времени Т.

Для указания программной траектории полета экипажу задаются маршрут полета, время полета его опорных пунктов, а также профиль полета. Навигационная программа , разработанная на основе программной траектории, в зависимости от возможностей технических средств навигации и пилотирования может вводиться в запоминающие устройства навигационных вычислителей и представляться на индикаторах навигационной обстановки, автоматических картографических планшетах, полетных картах, бортовых журналах и планах полета. Полет по программной траектории согласно навигационной программе должен выполняться в соответствии с руководством по летной эксплуатации. В них регламентируются правила, условия и ограничения по летной эксплуатации и пилотированию самолета данного типа.

Характер траектории определяется режимами полета самолета. Последние в свою очередь, характеризуются различными навигационными и пилотажными параметрами, под которыми понимают механические и геометрические величины и их производные, применяемые в самолетовождении.

Навигационные и пилотажные параметры могут совпадать с навигационными элементами полета или быть связаны с ними простыми соотношениями. К навигационным параметрам относятся: координаты пространственного места самолета, путевая скорость, путевой угол, угол сноса, вертикальная скорость, производные этих параметров и другие.

К пилотажным относятся: воздушная скорость, курс самолета, вертикальная скорость относительно воздушной среды, угловая скорость, углы рыскания, крена, тангажа и др. Согласно такому делению параметров , используемых в СВЖ, различают навигационный и пилотажный режимы полетов.

Контрольные вопросы


  1. Что такое предмет воздушная навигация?

  2. Какой бывает траектория полета?

  3. Какие геодезические системы координат наиболее употребительны в навигации?

  4. Чем определяется характер траектории полета?

Ключевые слова :

Предмет воздушная навигация, ПМС, МС, ТП, ЛП, профиль полета, ВТ, МВЛ, астрономическая система координат, геодезическая система координат

географическая система координат, нормальная система координат, высота полета, курс самолета, путевая скорость, путевой угол, угол сноса.

Казалось бы, быстрее и удобнее всего лететь по прямой между двумя аэропортами. Однако на самом деле по кратчайшему пути летают только птицы, а самолеты - по воздушным трассам. Воздушные трассы состоят из отрезков между путевыми точками, а сами путевые точки - это условные географические координаты, имеющие, как правило, определенное легко запоминаемое название из пяти букв, похожее на слово (обычно латиницей, но в русскоязычных используется транслитерация). Обычно это «слово» ничего не обозначает, например, NOLLA или LUNOK, но иногда в нем угадывается название близлежащего населенного пункта или какого-то географического объекта, например, точка OLOBA расположена недалеко от города Олонец, а NURMA - это окрестности деревни Нурма.

Карта воздушных трасс

Маршрут строится из отрезков между точками для упорядочивания воздушного движения: если бы все летали произвольно, это сильно бы осложнило работу диспетчеров, поскольку было бы очень сложно предугадать, где и когда окажется каждый из летящих самолетов. А тут все раз - и летят друг за другом. Удобно! Диспетчеры следят, чтобы самолеты летели на расстоянии не более 5 километров друг от друга, и если кто-то кого-то нагоняет, его могут попросить лететь чуть медленнее (или второго - чуть быстрее).

В чем секрет дуги?

Почему же тогда летают по дуге? На самом деле это иллюзия. Маршрут даже по трассам довольно близок к прямому, а дугу вы видите только на плоской карте, потому что Земля-то круглая. Проще всего убедиться в этом, взяв глобус и натянув прямо по его поверхности нитку между двумя городами. Запомните, где она пролегает, а теперь попробуйте повторить ее маршрут на плоской карте.

Маршрут полета из Москвы в Лос-Анджелес только кажется дугой

Есть, правда, еще один нюанс, касающийся трансконтинентальных перелетов. Четырехдвигательные самолеты (Boieng-747, Airbus A340, A380) могут летать по прямой. А вот более экономичным двухдвигательным (Boeing-767, 777, Airbus A330 и пр.) приходится делать крюк из-за сертификаций ETOPS (Extended range twin engine operational performance standards). Они должны держаться на расстоянии не далее определенного времени полета до ближайшего запасного аэродрома (как правило, 180 минут, но бывает и больше - 240 или даже 350), и в случае отказа одного двигателя сразу же отправляться туда для аварийной посадки. Получается действительно полет по дуге.

Чтобы увеличить «пропускную способность» трассы, используют эшелонирование, то есть, разводят самолеты по высоте. Конкретная высота полета и называется эшелоном, или, по-английски, Flight Level - «уровень полета». Сами эшелоны так и называются - FL330, FL260 и т.п., число обозначает высоту в сотнях футов. То есть, FL330 - это высота в 10058 метров. В России до недавного времени использовали метрическую систему, поэтому пилоты до сих пор по привычке говорят: «Наш полет пройдет на высоте десять тысяч метров», но сейчас тоже перешли на международную футовую.

Навигационный дисплей

Как набирают высоту?

«Четные» эшелоны (300, 320, 340 и т.п.) используются при полетах с востока на запад, нечетные - с запада на восток. В некоторых странах эшелоны делятся между четырьмя сторонами света. Смысл прост: благодаря этому между самолетами, летящими навстречу друг другу, всегда будет как минимум 1000 футов по высоте, то есть, более 300 метров.

А вот разница во времени полета с востока на запад и с запада на восток не имеет к эшелонам никакого отношения. И к вращению Земли тоже, потому что атмосфера вращается вместе с планетой. Все просто: в Северном полушарии ветры дуют чаще с запада на восток, поэтому в одном случае скорость ветра прибавляется к скорости самолета относительно воздуха (она условно постоянна), а в другом - вычитается из него, поэтому скорость относительно земли разная. А на эшелоне ветер может дуть со скоростью и 100, и 150, и даже 200 км/ч.

Направление движения самолетов на эшелонах

Как работает навигация?

Еще совсем недавно летчики умели ориентироваться в том числе по Солнцу, Луне и звездам, и на старых самолетах для этого даже были окошки в верхней части кабины. Процесс был довольно сложным, поэтому в экипажах присутствовал еще и штурман.

В аэронавигации используются наземные радиомаяки - радиостанции, посылающие в эфир сигнал на известной частоте из известной точки. Частоты и точки обозначены на картах. Настроив бортовой приемник со специальной «круговой» антенной на нужную частоту, можно понимать, в каком направлении от вас находится радиомаяк.

Если маяк самый простой, ненаправленный (NDB, non-directional beacon), то больше узнать ничего нельзя, но по изменению направления на этот маяк при известной скорости можно вычислить свои координаты. Более продвинутый азимутальный маяк (VOR, VHF Omni-directional Radio Range) тоже имеет круговые антенны и поэтому с его помощью можно определить магнитный пеленг, то есть, понять, каким курсом вы относительно этого маяка двигаетесь. Дальномерный маяк (DME, Distance Measuring Equipment, не путать с аэропортом Домодедово), работающий по принципу радара, позволяет определить расстояние до него. Как правило, азимутальные и дальномерные маяки (VOR/DME) устанавливаются в паре.

Именно так выглядит Лондон и его окрестности в приложении Flight Radar 24

Лекция №1. Основные навигационные понятия и определения……………….2

Лекция №2. Сведения о форме и размерах Земли………………………………7

Лекция №3. Определение относительных координат ВС……………………...16

Лекция №4. Штурманская подготовка к полету………………………………..22

Лекция №5. Общие правила воздушной навигации……………………………25

Лекция №6. Обеспечение безопасности полетов в навигационном отношении. Требования к содержанию навигационного обеспечения

полетов……………………………………………………………..29

Лекция №7. Применение курсовых систем…………………………………….37

Лекция №8. Визуальная ориентировка…………………………………………41

Лекция №9. Применение доплеровского измерителя путевой скорости и угла сноса. Навигационные характеристики ДИСС, принцип измерения путевой скорости, угла сноса с помощью ДИСС. Курсо- доплеровское измерение координат ВС, курсо - доплеровский навигационный комплекс…………………………………………47

Лекция №10. Неавтономные системы навигации………………………………51

Лекция №11. Дальномерные радионавигационные системы…………………..59

Лекция №12. Применение угломерно-дальномерных навигационных систем65

Лекция №13. Применение радиолокационной станции в полёте……………..69

Лекция №14. Спутниковые системы радионавигации………………………….75

Список использованной литературы……………………………………………..79

Лекция №1. Основные навигационные понятия и определения

«Воздушная навигация» - наука о вождении воздушных судов по программной траектории.

Полет является сложным движением самолета в воздухе. Его можно разложить на поступательное движение центра масс и угловое движение вокруг центра масс. При описании положения самолета в процессе его поступательного движения используется ряд точек и линий. Они служат основой для ведения навигационных понятий, непосредственно связанных с движением центра масс самолета. К ним относятся: пространственное место самолета (ПМС),место самолета (МС),траектория полета (ТП),линия пути (ЛП).

Пространственное место самолета - точка пространства, в которой в данный момент находится центр масс самолета.

Место самолета – точка на земной поверхности, в которую в данный момент проектируется центр масс самолета. Пространственное место самолета и место самолета могут быть заданными и фактическими.

Траектория полета - пространственная линия, описываемая центром масс самолета при движении. Она может быть заданной, требуемой и фактической. Под пространственно - временной траекторией полета понимают траекторию полета, заданную не только в пространстве, но и во времени. Заданная пространственно- временная траектория называется программной.

Линия пути - это проекция траектории полета самолета на поверхность Земли. Проекция программной траектории полета на поверхность Земли называется линией заданного пути (ЛЗП). Линия, по которой должен пролететь самолет, называется маршрутом полета.

Профилем полета – называется проекция программной траектории на вертикальную плоскость, проведенную через развернутый маршрут полета в прямую линию. Проекция на земную поверхность фактической траектории полета самолета называется линией фактического пути (ЛФП). Вдоль маршрутов устанавливаются ВТ и МВП, представляющие собой ограниченные по высоте и ширине коридоры в воздушном пространстве.

ВТ - коридор в воздушном пространстве, ограниченный по высоте и ширине, предназначенный для выполнения полетов воздушными судами всех ведомств, обеспеченный трассовыми аэродромами и оборудованный средствами радионавигации, контроля и управления воздушным движением.

МВП - коридор в воздушном пространстве, ограниченный по высоте и ширине и предназначенный для выполнения полетов воздушными судами при осуществлении местных воздушных сообщений.

При решении ряда навигационных задач могут применяться несколько координатных систем. В общем случае их выбор и применение зависят от характера технических средств навигации и возможностей вычислительных устройств. Положение МПС и МС в любой системе определяется координатами, которые определяются линейными или угловыми величинами. В навигации к наиболее употребительным геоцентрическим системам относятся: географическая (астрономическая и геодезическая),нормальная сферическая ,ортодромическая иэкваториальная .

В качестве основных географических систем используются: прямоугольные правые системы координат (нормальная земная и стартовая),биполярные (плоская и сферическая),гиперболическая игоризонтальная .

При проектировании физической поверхности Земли на поверхность геоида используется астрономическая система координат. Координатами место самолета в этой системе являются:

    астрономическая широта  а - угол между плоскостью экватора и направлением отверстий линий в данной точке, измеряющийся в плоскости экватора к полюсам от 0 о до90 о;

    астрономическая долгота  а - двугранный угол, заключенный между плоскостью Гринвичского меридиана и плоскостью, проходящей через отвесную линию в данной точке параллельно оси вращения Земли (плоскостью астрономического меридиана) измеряющийся от 0 о до180 о к востоку и западу.

Координатами в геодезической системе (рис. 1.2) являются:

    геодезическая широта В – угол между плоскостью экватора 1 и нормальную4 к референц - эллипсоиду в данной точке М (измеряется от плоскости экватора к полюсам от 0 о до90 о);

    геодезическая долгота L– двугранный угол между плоскостями Гринвичского и геодезического5 меридианов данной точки М (измеряется от 0 о до180 о к востоку и западу, в некоторых случаях от 0 о до 360 о к востоку).

Географическая система координат:

    географическая широта  г - двугранный угол, заключенный между плоскостью экватора и нормалью (отвесной линией) к поверхности эллипсоида (геоида) в данной точке М (измеряется от экватора к полюсам от 0 о до90 о);

    географическая долгота  г – двугранный угол, заключенный между плоскостями начального (гринвичского) меридиана и меридиана данной точки М. Измеряется от 0 о до180 о к востоку и западу (при решении некоторых задач от 0 о до 360 о к востоку).

Нормальная система координат:

    нормальная сферическая широта - угол между плоскостью экватора и направлением из центра земного шара в точку, являющуюся изображением соответствующей точки эллипсоида. Измеряется центральным углом или дугой меридиана в тех же пределах. Что и географическая широта;

    нормальная сферическая долгота - двугранный угол между плоскостью начального (гринвичского меридиана) и плоскостью меридиана данной точки. Измеряется либо центральным углом в плоскости экватора либо дугой экватора от начального меридиана до меридиана данной точки в тех же пределах, что и географическая долгота.

Физическое состояние воздушной среды, а также направление ее перемещения относительно земной поверхности оказывают существенное влияние на траекторию движения самолета в любой системе координат. Для оценки движения самолета по траектории используются геометрические и механические величины, характеризующие пространственное положение самолета, скорость и направление его движения в некоторый момент времени. Их принято называть навигационными элементами полета и подразделять на навигационные элементы и движения.

Высота полета - это расстояние по вертикали от некоторого уровня, принятого от начала отсчета, до самолета.

Элементами второй группы являются: путевая скорость, путевой угол, угол сноса, воздушная скорость, курс и вертикальная скорость.

Скорость полета самолета определяют как относительно воздушной среды, окружающий самолет, так и относительно земной поверхности.

Курсом самолета γ – называется угол в горизонтальной плоскости м
ежду направлением, принятым за начало отсчета1 в точке местоположения самолета, и проекцией на эту плоскость его продольной оси2 (рис. 1.7).

Путевой скоростью полета называется скорость перемещения по земной поверхности МС, направленная по касательной к линии пути2 .

Путевым углом называется угол между направлением, принятым за начало отсчета и линией пути (вектором путевой скоростиW). Он также как и курс отчитывается от начала отсчета по часовой стрелке от 0 о до 360 о.

Угол сноса - самолета называется угол между вектором воздушной скорости и вектором путевой скорости в горизонтальной плоскости. Он считается положительным, если вектор путевой скорости расположен правее вектора воздушной скорости, отрицательным – если левее.

Вертикальной скоростью W в называется вертикальная составляющая вектора полной скорости поступательного перемещения самолета относительно ЗемлиW(рис. 1.7) .

Рассмотренные выше навигационные элементы полета могут быть заданными, фактическими и требуемыми. Например, линии фактического пути - фактический путевой угол, линии заданного пути - заданный путевой угол, а линии требуемого пути - требуемый путевой угол.

Постановка навигационной задачи основывается на определении программных, фактических и требуемых значений навигационно- пилотажных параметров относительно воздушной среды и земной поверхности, характеризующих соответствующие траектории полета.

Полету любого назначения предшествует расчет программной траектории и составление (разработка) заданной навигационной программы полета, рассчитанная программная траектория, обеспечивающая наиболее безопасный и экономический полет, может быть задана аналитически или графически в различных системах координат. Аналитически она выражается конечными уравнениями движения центра масс самолета, которые в широко распространенной ортодромической прямоугольной системе координат имеют вид:

(1.9)

где Z з,S з,H з – заданные (программные) ортодромические прямоугольные координаты ПМС в заданный момент времени Т.

Для указания программной траектории полета экипажу задаются маршрут полета, время полета его опорных пунктов, а также профиль полета. Навигационная программа, разработанная на основе программной траектории, в зависимости от возможностей технических средств навигации и пилотирования может вводиться в запоминающие устройства навигационных вычислителей и представляться на индикаторах навигационной обстановки, автоматических картографических планшетах, полетных картах, бортовых журналах и планах полета. Полет по программной траектории согласно навигационной программе должен выполняться в соответствии с руководством по летной эксплуатации. В них регламентируются правила, условия и ограничения по летной эксплуатации и пилотированию самолета данного типа.

Характер траектории определяется режимами полета самолета. Последние в свою очередь, характеризуются различными навигационными и пилотажными параметрами, под которыми понимают механические и геометрические величины и их производные, применяемые в самолетовождении.

Навигационные и пилотажные параметры могут совпадать с навигационными элементами полета или быть связаны с ними простыми соотношениями. К навигационным параметрам относятся: координаты пространственного места самолета, путевая скорость, путевой угол, угол сноса, вертикальная скорость, производные этих параметров и другие.

К пилотажным относятся: воздушная скорость, курс самолета, вертикальная скорость относительно воздушной среды, угловая скорость, углы рыскания, крена, тангажа и др. Согласно такому делению параметров, используемых в СВЖ, различают навигационный и пилотажный режимы полетов.

 

Возможно, будет полезно почитать: