В стране находится запретный город. География китая. Музейный комплекс Гугун

Из своего земного дома мы вглядываемся вдаль, стремясь представить себе устройство мира, в котором родились. Ныне мы глубоко проникли в пространство. Близкие окрестности мы знаем уже довольно хорошо. Но по мере продвижения вперёд наши познания становятся всё менее полными, пока мы не подходим к неясному горизонту, где в тумане ошибок ищем едва ли более реальные ориентиры. Поиски будут продолжаться. Стремление к знаниям древнее истории. Оно не удовлетворено, его нельзя остановить.
Эдвин Пауэлл Хаббл

На заре ХХ века теоретики космонавтики мечтали о том, что когда-нибудь человечество научится запускать в космос телескопы. Земная оптика в то время была несовершенна, астрономическим наблюдениям часто мешала плохая погода и «засветка» неба, поэтому казалось разумным отправить телескоп за пределы атмосферы, чтобы изучать планеты и звёзды без помех. Но даже фантасты не смогли бы в то время предсказать, сколько удивительных и неожиданных открытий принесут орбитальные телескопы.

СЧАСТЛИВЫЙ БРАК

Самым известным орбитальным телескопом является «Хаббл» (Hubble Space Telescope, HST), названный в честь знаменитого американского астронома Эдвина Пауэлла Хаббла, доказавшего, что галактики являются звёздными системами, и открывшего их разбегание.

Телескоп «Хаббл» входит в четвёрку Больших обсерваторий NASA. Имея главное зеркало диаметром 2,4 метра, он долгое время оставался самым большим оптическим инструментом на орбите, пока в 2009 году Европейское космическое агентство не запустило туда инфракрасный телескоп «Гершель» с диаметром зеркала 3,5 метра. На Земле такого размера инструменты не могут полностью реализовать свою разрешающую способность: дрожание атмосферы размывает изображение.

Проект мог провалиться, если бы телескоп изначально не был рассчитан на обслуживание астронавтами. Фирма «Кодак» быстро изготовила второе зеркало, однако заменить его в космосе было невозможно, и тогда специалисты предложили создать космические «очки» - систему оптической коррекции COSTAR из двух особых зеркал. Чтобы установить систему на «Хаббл», 2 декабря 1993 года на орбиту отправился шаттл Endeavour. Астронавты совершили пять сложнейших выходов в открытый космос и вернули дорогостоящий телескоп к жизни.

Позднее астронавты NASA летали к «Хабблу» ещё четыре раза, значительно продлив срок его эксплуатации. Очередная экспедиция была назначена на февраль 2005 года, но в марте 2003-го, после катастрофы шаттла Columbia, она была отложена на неопределённый срок, что поставило под угрозу дальнейшую работу телескопа.

Под давлением общественности в июле 2004 года комиссия Академии наук США постановила сохранить телескоп. Через два года новый директор NASA Майкл Гриффин объявил о подготовке последней экспедиции по ремонту и модернизации телескопа. Предполагается, что после этого «Хаббл» проработает на орбите до 2014 года, после чего его сменит более совершенный телескоп «Джеймс Вебб».

«Хаббл» был доставлен на орбиту 24 апреля 1990 года в грузовом отсеке шаттла Discovery. По иронии судьбы «Хаббл», начав работу в космосе, дал изображение хуже, чем такой же по размерам наземный телескоп. Причиной была ошибка при изготовлении главного зеркала

РАБОТА С «ХАББЛОМ»

С «Хабблом» может поработать любой человек, имеющий диплом астронома. Однако придётся подождать в очереди. Конкуренция за время наблюдений высока: обычно запрошенное время в шесть, а иногда в девять раз превышает реально доступное.

В течение нескольких лет часть времени из резерва выделялась астрономам-любителям. Их заявки рассматривались специальным комитетом. Основным требованием к заявке была оригинальность темы. В период между 1990 и 1997 годом было произведено 13 наблюдений по программам, предложенным астрономами-любителями. Затем из-за недостатка времени эту практику прекратили.

Открытия, сделанные с помощью «Хаббла», трудно переоценить: первые изображения астероида Церера, карликовой планеты Эрида, далёкого Плутона. В 1994 году «Хаббл» предоставил высококачественные снимки столкновения кометы Шумейкеров-Леви-9 с Юпитером. «Хаббл» отыскал множество протопланетных дисков вокруг звёзд в Туманности Ориона - таким образом астрономы смогли доказать, что процесс формирования планет происходит у большинства звёзд нашей галактики. По результатам наблюдений квазаров была построена космологическая модель Вселенной - оказалось, что наш мир расширяется с ускорением и заполнен загадочной тёмной материей. Кроме того, наблюдения «Хаббла» позволили уточнить возраст Вселенной - 13,7 миллиарда лет.

За 15 лет работы на околоземной орбите «Хаббл» получил 700 тысяч изображений 22 тысяч небесных объектов: планет, звёзд, туманностей и галактик. Поток данных, которые он ежедневно генерирует в процессе наблюдений, составляет 15 гигабайт. Общий их объём уже превысил 20 терабайт.

В этой подборке мы представляем наиболее интересные из снимков, сделанных «Хабблом». Тема - туманности и галактики. Ведь «Хаббл» прежде всего создавался для на- блюдения за ними. В следующих статьях «МФ» обратится к снимкам других космических объектов.

ТУМАННОСТЬ АНДРОМЕДЫ

Туманность Андромеды, получившая в каталоге Мессье обозначение М31, хорошо известна любителям как астрономии, так и научной фантастики. И все они знают, что это вовсе не туманность, а ближайшая к нам галактика. Благодаря наблюдениям за ней Эдвин Хаббл сумел доказать, что многие из туманностей являются звёздными системами, подобными нашему Млечному Пути.

Как следует из названия, туманность расположена в созвездии Андромеды и находится от нас на расстоянии 2,52 миллиона световых лет. В 1885 году в галактике вспыхнула сверхновая SN 1885A. За всю историю наблюдений это пока единственное подобное событие, зарегистрированное в М31.

В 1912 году было установлено, что Туманность Андромеды приближается к нашей галактике со скоростью 300 км/с. Столкновение двух галактических систем произойдёт приблизительно через 3-4 миллиарда лет. Когда это произойдёт, они сольются в одну большую галактику, которую астрономы называют Млечномедой. Возможен вариант, что при этом наша Солнечная система будет выброшена в межгалактическое пространство мощными гравитационными возмущениями

КРАБОВИДНАЯ ТУМАННОСТЬ

Крабовидная туманность - одна из самых знаменитых газовых туманностей. Она занесена в каталог французского астронома Шарля Мессье под номером один (М1). Сама идея создать каталог космических туманностей пришла к Мессье после того, как, наблюдая небо 12 сентября 1758 года, он принял Крабовидную туманность за новую комету. Чтобы избежать таких ошибок в будущем, француз и взялся регистрировать подобные объекты.

Крабовидная Туманность находится в созвездии Тельца, на расстоянии 6,5 тысяч световых лет от Земли, и представляет собой остатки от взрыва сверхновой. Сам взрыв наблюдали арабские и китайские астрономы 4 июля 1054 года. Согласно сохранившимся записям, вспышка оказалась настолько яркой, что была видна даже днём. С тех пор туманность расширяется с чудовищной скоростью - около 1000 км/с. Её протяжённость сегодня составляет более десяти световых лет. В центре туманности находится пульсар PSR B0531+21 - десятикилометровая нейтронная звезда, оставшаяся после взрыва сверхновой. Свое название Крабовидная туманность получила от рисунка астронома Уильяма Парсонса, сделанного в 1844 году, - в этом наброске она очень напоминала краба

У орбитальной астрономии есть своя история. К примеру, во время полного солнечного затмения 19 июня 1936 года московский астроном Пётр Куликовский совершил подъём на субстратостате для фотографирования короны и ореола Солнца. В 1950-х годах француз Одуен Дольфюс предпринял серию стратосферных полётов в специально сконструированной для этой цели гермокабине, поднимаемой гирляндой из 104-х небольших воздушных шаров, привязанных к 450-метровому тросу. Кабина была снабжена 30-сантиметровым телескопом, и с его помощью снимались спектры планет. Развитием этих экспериментов стала беспилотная гондола «Астролаб», с которой французы выполнили серию стратосферных наблюдений, - её система ориентации и стабилизации уже создавалась на основе космических технологий.

Для американских астрономов первым шагом к орбитальным телескопам стала программа «Стратоскоп», которой руководил известный астрофизик Мартин Шварцшильд. С 1955 года начались полёты «Стратоскопа-1» с солнечным телескопом, а 1 марта 1963 года свой первый ночной полёт совершил «Стратоскоп-2», оснащённый высококачественным рефлектором системы Кассегрена - с его помощью были получены инфракрасные спектры планет и звёзд. Последний и наиболее удачный полёт состоялся в марте 1970 года. За девять часов наблюдения были получены снимки планет-гигантов и ядра галактики NGC 4151. Полётом управляла группа во главе с сотрудником Принстонского университета Робертом Даниельсоном, который позднее вошёл в группу проектантов телескопа «Хаббл».

СТОЛПЫ ТВОРЕНИЯ

Столпы Творения - фрагменты газопылевой туманности Орла (М16), которую можно разглядеть в созвездии Змеи. «Хаббл» снял их в апреле 1995 года, и этот снимок стал одним из самых популярных в коллекции NASA. Первоначально считалось, что в Столпах Творения рождаются новые звёзды - отсюда и название. Однако более поздние исследования показали обратное - как раз там материала для образования звёзд недостаточно. Пик рождения светил в туманности Орла завершился уже миллион лет назад, и первые молодые и горячие солнца своим излучением успели разогнать газ в центре

Столпы Творения являются частью нашей галактики, но отстоят на 7 тысяч световых лет. Они колоссальны (высота левого - треть парсека), но весьма неустойчивы. Недавно астрономы обнаружили, что около 9 тысяч лет назад рядом с ними взорвалась сверхновая. Ударная волна достигла Столпов 6 тысяч лет на- зад и уже уничтожила их, но с учетом удалённости земляне ещё нескоро смогут наблюдать разрушение одного из самых необычных и красивых космических объектов.

ИНКУБАТОР МИРОВ

Если в туманности Орла процесс рождения новых звёзд завершился, то в созвездии Ориона пока ещё нет. Газопылевая туманность Ориона (М42) находится в том же спиральном рукаве галактики, что и Солнце, но на расстоянии 1300 световых лет от нас. Это ярчайшая туманность ночного неба, она хорошо различима невооружённым глазом. Размеры туманности велики - её протяжённость составляет 33 световых года. Там находится около тысячи светил в возрасте менее миллиона лет (по космическим меркам, это младенцы) и десятки тысяч звёзд, которым чуть больше десяти миллионов лет. Благодаря «Хабблу» удалось разглядеть протопланетные диски рядом с юными звёздами, причём на разных стадиях формирования. Наблюдая за туманностью, астрономы могут наконец составить ясное представление о том, как рождаются планетные системы. Однако происходящие в туманности Ориона процессы настолько активны, что уже через 100 тысяч лет она распадётся и прекратит существование, оставив после себя скопление звёзд с планетами.

БУДУЩЕЕ СОЛНЦА

В космосе можно увидеть не только рождение миров, но и их смерть. На снимке «Хаббла», полученном в 2001 году, запечатлена Муравьиная туманность, которая известна астрономам под обозначением Mz3 (Menzel 3). Туманность расположена в нашей галактике на расстоянии 3 тысяч световых лет от Земли и образовалась в результате выбросов газа из звезды, похожей на наше Солнце. Её протяжённость более светового года.

Муравьиная туманность озадачила астрономов. Пока они не могут ответить на вопрос, почему вещество умирающей звезды разлетается не в виде расширяющейся сферы, а в виде двух независимых выбросов, придающих туманности вид муравья, - это плохо согласуется с существующей теорией эволюции звёзд. Одно из возможных объяснений: у затухающей звезды есть очень близкая звезда-компаньон, сильные гравитационные приливные силы которой оказыва- ют влияние на формирование потоков газа. Другое объяснение: при вращении затухающей звезды её магнитное поле приобретает сложную закручивающуюся структуру, влияя на заряженные частицы, разлетающиеся в пространстве со скоростью до 1000 км/с. Так или иначе, но пристальное наблюдение за Муравьиной туманностью поможет нам увидеть возможное будущее нашего родного светила.

СМЕРТЬ МИРА

Звёзды, превышающие по массе Солнце, обычно заканчивают свою жизнь превращением в сверхновую. «Хабблу» удалось запечатлеть несколько таких вспышек, но, пожалуй, самым эффектным выглядит снимок сверхновой 1994D, которая взорвалась на окраинах диска галактики NGC 4526 (видна на фотографии как яркое пятно внизу слева). Сверхновая 1994D не была чем-то особенным - наоборот, она интересна как раз тем, что очень похожа на другие. Имея представление о сверхновых, астрономы по блеску 1994D могут определить расстояние до неё и уточнить, как расширяется Вселенная. Сам снимок наглядно демонстрирует масштабы явления - по своей светимости сверхновая сопоставима со светимостью целой галактики.

ПОЖИРАТЕЛЬ ГАЛАКТИК

В космосе существуют не только звёзды, туманности и галактики, но и чёрные дыры. Чёрная дыра - это область в пространстве, гравитационное притяжение в которой настолько велико, что её не может покинуть даже свет. Счи- тается, что можно встретить несколько типов чёрных дыр: возникших в момент Большого взрыва, зародившихся в результате коллапса массивной звезды и сформировавшихся в центрах галактик. Астрономы говорят, что огромные чёрные дыры есть в центре любой спиральной и эллиптической галактики. Но как увидеть то, из чего не способен вырваться даже свет? Оказывается, обнаружить чёрную дыру можно по её взаимодействию с пространством.

На снимке «Хаббла», полученном в 2000 году, запечатлён центр эллиптической галактики М87 - крупнейшей в скоплении созвездия Девы. Она находится от нас на расстоянии 50 миллионов световых лет и является источником мощнейшего радио- и гамма-излучения. Ещё в 1918 году было установлено, что из центра галактики бьёт струя раскалённых газов, скорость внутри которой близка к световой. Протяжённость струи - 5 тысяч световых лет! Изучение галактики М87 показало: феноменальную плотность вещества в её центре и чудовищную струю можно объяснить, только если предположить, что там находится гигантская чёрная дыра, масса которой в 6,4 миллиарда раз больше солнечной. Наличие этого «пожирателя» галактик и периодические выбросы вещества из области рядом с ним препятствуют рождению новых звёзд. Астрономы уверены: если бы в центре М87 находилась обычная чёрная дыра, то галактика имела бы спиральный вид, а по яркости в 30 раз превосходила бы нашу.

ЮНОСТЬ ВСЕЛЕННОЙ

Орбитальный телескоп «Хаббл» может служить не только оптическим инструментом, но и настоящей «машиной времени» - например, с его помощью можно разглядеть объекты, появившиеся практически сразу после Большого взрыва. В 2004 году «Хаббл» посредством новой чувствительной камеры сумел сфотографировать скопление из 10 тысяч самых удалённых и, соответственно, самых древних галактик. Эти галактики находятся от нас на рекордном расстоянии - 13,1 миллиарда световых лет. Если наша Вселенная родилась 13,7 миллиарда лет назад, то получается, что обнаруженные галактики появились всего-то спустя 650-700 миллионов лет после Большого взрыва. Разумеется, мы видим не сами эти галактики, а лишь их свет, который наконец-то добрался до Земли

Таким образом, на фотографии отображены события, которые происходили в первый миллиард лет жизни нашей Вселенной. По оценкам учёных, на том этапе эволюции она была на порядок меньше своих сегодняшних размеров, а находившиеся в ней объекты располагались ближе друг к другу. Некоторые из сфотографированных галактик напрочь лишены чёткой внутренней структуры, присущей нашей галактике. Другие - явно переживают период столкновения, когда чудовищные гравитационные силы придают им необычную форму.

Регион древнейших галактик астрономы условно называют Ultra Deep Field. Он находится чуть ниже созвездия Ориона.

ТУМАННОСТЬ КОНСКАЯ ГОЛОВА

Туманность Конская Голова (или Barnard 33) находится в созвездии Ориона на расстоянии около 1600 световых лет от Земли. Её линейный размер - 3,5 световых года. Она - часть огромного газопылевого комплекса, названного Облаком Ориона. Эта туманность известна даже людям, далёким от астрономии, ведь она и впрямь похожа на конскую голову. Красное свечение голове придает ионизация водорода, находящегося за туманностью, под действием излучения от ближайшей яркой звезды - Альнитак. Истекающий из туманности газ движется в сильном магнитном поле. Яркие пятна в основании туманности Конская Голова - это молодые звёзды, находящиеся в процессе формирования. Благодаря своей необычной форме туманность привлекает внимание: её часто рисуют и фотографируют. Наверное, именно поэтому снимок Конской Головы, сделанный «Хабблом», был признан лучшим по итогам голосования пользователей интернета.

ГАЛАКТИКА СОМБРЕРО

Сомбреро (М104) - это спиральная галактика в созвездии Девы, которая находится на расстоянии 28 миллионов световых лет от нас. Диаметр галактики - 50 тысяч световых лет. Свое название она получила благодаря выступающей центральной части (балджу) и ребру из тёмного вещества (не путать с тёмной материей!), придающим галактике сходство с мексиканской шляпой. Центральная часть галактики излучает во всех диапазонах электромагнитного спектра. Как установили учёные, там находится гигантская чёрная дыра, масса которой в миллиард раз превосходит солнечную. Пылевые кольца M104 содержат большое количество молодых ярких звёзд и обладают крайне сложной структурой, которая пока не поддаётся объяснению.

Снимок галактики Сомбреро был признан лучшим снимком «Хаббла» по мнению астрономов, опрошенных корреспондентами британской газеты Daily Mail. Наверное, своим выбором астрономы хотели сказать, что познание Вселенной не сводится к кропотливому изучению тысяч фотографий звёздного неба, к построению графиков и к бесконечным вычислениям. Познавая Вселенную, мы ещё и наслаждаемся её фантастической красотой. И в этом нам помогает уникальное творение человеческих рук - орбитальный телескоп «Хаббл».

Эдвин Пауэлл Хаббл - выдающийся американский астроном ХХ века. Родился 20 ноября 1889 года в Маршфилде (штат Миссури). Умер 28 сентября 1953 года в Сан-Марино (штат Калифорния). Основные труды Хаббла посвящены изучению галактик.

  • В 1922 году Хаббл предложил разделить наблюдаемые туманности на внегалактические (галактики) и галактические (газопылевые).
  • В 1923 году учёный ввёл классификацию внегалактических туманностей, разделив их на эллиптические, спиральные и иррегулярные.
  • В 1924-м астроном выявил на фотографиях некоторых ближайших галактик звёзды, из которых они состоят, чем доказал: галактики представляют собой звёздные системы, подобные Млечному Пути.
  • В 1929 году Хаббл обнаружил зависимость между красным смещением в спектре галактик и расстоянием до них (закон Хаббла). Он вычислил коэффициент, связывающий расстояние до галактики со скоростью её удаления (постоянная Хаббла). Разбегание галактик стало прямым доказательством того, что Вселенная возникла в результате Большого взрыва и продолжает быстро расширяться.

Вид «Хаббла» с борта космического корабля «Атлантис» STS-125

Космический телескоп «Хаббл» (КТХ ; Hubble Space Telescope , HST ; код обсерватории «250») - на орбите вокруг , названная в честь Эдвина Хаббла. Телескоп «Хаббл» - совместный проект НАСА и Европейского космического агентства ; он входит в число Больших обсерваторий НАСА.

Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь - в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа в 7-10 раз больше, чем у аналогичного телескопа, расположенного на Земле.

История

Предыстория, концепции, ранние проекты

Первое упоминание концепции орбитального телескопа встречается в книге Германа Оберта «Ракета в межпланетном пространстве» (Die Rakete zu den Planetenraumen ), изданной в 1923 году.

В 1946 году американский астрофизик Лайман Спитцер опубликовал статью «Астрономические преимущества внеземной обсерватории» (Astronomical advantages of an extra-terrestrial observatory ). В статье отмечены два главных преимущества такого телескопа. Во-первых, его угловое разрешение будет ограничено лишь дифракцией, а не турбулентными потоками в атмосфере; в то время разрешение наземных телескопов было от 0,5 до 1,0 угловой секунды, тогда как теоретический предел разрешения по дифракции для орбитального телескопа с зеркалом 2,5 метра составляет около 0,1 секунды. Во-вторых, космический телескоп мог бы вести наблюдение в инфракрасном и ультрафиолетовом диапазонах, в которых поглощение излучений земной атмосферой весьма значительно.

Спитцер посвятил значительную часть своей научной карьеры продвижению проекта. В 1962 году доклад, опубликованный Национальной академией наук США, рекомендовал включить разработку орбитального телескопа в космическую программу, и в 1965 году Спитцер был назначен главой комитета, в задачу которого входило определение научных задач для крупного космического телескопа.

Космическая астрономия стала развиваться после окончания Второй мировой войны. В 1946 году впервые был получен ультрафиолетовый спектр .Орбитальный телескоп для исследований Солнца был запущен Великобританией в 1962 году в рамках программы «Ариэль», а в 1966 году НАСА запустило в космос первую орбитальную обсерваторию OAO-1. Миссия не увенчалась успехом из-за отказа аккумуляторов через три дня после старта. В 1968 году была запущена OAO-2, которая производила наблюдения ультрафиолетового излучения и вплоть до 1972 года, значительно превысив расчётный срок эксплуатации в 1 год.

Миссии OAO послужили наглядной демонстрацией роли, которую могут играть орбитальные телескопы, и в 1968 году НАСА утвердило план строительства телескопа-рефлектора с зеркалом диаметром 3 м. Проект получил условное название LST (Large Space Telescope ). Запуск планировался на 1972 год. Программа подчёркивала необходимость регулярных пилотируемых экспедиций для обслуживания телескопа с целью обеспечения продолжительной работы дорогостоящего прибора. Параллельно развивавшаяся программа «Спейс шаттл» давала надежды на получение соответствующих возможностей.

Борьба за финансирование проекта

Благодаря успеху программы ОАО в астрономическом сообществе сложился консенсус о том, что строительство крупного орбитального телескопа должно стать приоритетной задачей. В 1970 году НАСА учредило два комитета, один для изучения и планирования технических аспектов, задачей второго была разработка программы научных исследований. Следующим серьёзным препятствием было финансирование проекта, затраты на который должны были превзойти стоимость любого наземного телескопа. Конгресс США поставил под сомнение многие статьи предложенной сметы и существенно урезал ассигнования, первоначально предполагавшие масштабные исследования инструментов и конструкции обсерватории. В 1974 году, в рамках программы сокращений расходов бюджета, инициированной президентом Фордом, Конгресс полностью отменил финансирование проекта.

В ответ на это астрономами была развёрнута широкая кампания по лоббированию. Многие учёные-астрономы лично встретились с сенаторами и конгрессменами, было также проведено несколько крупных рассылок писем в поддержку проекта. Национальная Академия Наук опубликовала доклад, в котором подчёркивалась важность создания большого орбитального телескопа, и в результате сенат согласился выделить половину средств из бюджета, первоначально утверждённого Конгрессом.

Финансовые проблемы привели к сокращениям, главным из которых было решение уменьшить диаметр зеркала с 3 до 2,4 метра, для снижения затрат и получения более компактной конструкции. Также был отменён проект телескопа с полутораметровым зеркалом, который предполагалось запустить с целью тестирования и отработки систем, и принято решение о кооперации с Европейским космическим агентством. ЕКА согласилось участвовать в финансировании, а также предоставить ряд инструментов и для обсерватории, взамен за европейскими астрономами резервировалось не менее 15 % времени наблюдений. В 1978 году Конгресс утвердил финансирование в размере 36 млн долл., и сразу после этого начались полномасштабные работы по проектированию. Дата запуска планировалась на 1983 год. В начале 1980-х телескоп получил имя Эдвина Хаббла.

Организация проектирования и строительства

Работа над созданием космического телескопа была поделена между многими компаниями и учреждениями. Космический центр Маршалла отвечал за разработку, проектирование и строительство телескопа, Центр космических полётов Годдарда занимался общим руководством разработкой научных приборов и был выбран в качестве наземного центра управления. Центр Маршалла заключил контракт с компанией «Перкин-Элмер» на проектирование и изготовление оптической системы телескопа (Optical Telescope Assembly - OTA ) и датчиков точного наведения. Корпорация «Локхид» получила контракт на строительство для телескопа.

Изготовление оптической системы

Полировка главного зеркала телескопа, лаборатория компании «Перкин-Элмер», май 1979 года

Зеркало и оптическая система в целом были наиболее важными частями конструкции телескопа, и к ним предъявлялись особо жёсткие требования. Обычно зеркала телескопов изготавливаются с допуском примерно в одну десятую длины волны видимого света, но, поскольку космический телескоп предназначался для наблюдений в диапазоне от ультрафиолетового до почти инфракрасного, а разрешающая способность должна была быть в десять раз выше, чем у наземных приборов, допуск для изготовления его главного зеркала был установлен в 1/20 длины волны видимого света, или примерно 30 нм.

Компания «Перкин-Элмер» намеревалась использовать новые станки с числовым программным управлением для изготовления зеркала заданной формы. Компания «Кодак» получила контракт на изготовление запасного зеркала с использованием традиционных методов полировки, на случай непредвиденных проблем с неопробированными технологиями (зеркало, изготовленное компанией «Кодак», в настоящее время находится в экспозиции музея Смитсоновского института). Работы над основным зеркалом начались в 1979 году, для изготовления использовалось стекло со сверхнизким коэффициентом теплового расширения. Для уменьшения веса зеркало состояло из двух поверхностей - нижней и верхней, соединённых решётчатой конструкцией сотовой структуры.

Резервное зеркало телескопа, Смитсоновский музей авиации и космонавтики, Вашингтон

Работы по полировке зеркала продолжались до мая 1981 года, при этом были сорваны первоначальные сроки и значительно превышен бюджет. В отчётах НАСА того периода выражаются сомнения в компетентности руководства компании «Перкин-Элмер» и её способности успешно завершить проект такой важности и сложности. В целях экономии средств НАСА отменило заказ на резервное зеркало и перенесло дату запуска на октябрь 1984 года. Окончательно работы завершились к концу 1981 года, после нанесения отражающего покрытия из алюминия толщиной 75 нм и защитного покрытия из фторида магния толщиной в 25 нм.

Несмотря на это, сомнения в компетентности «Перкин-Элмер» оставались, поскольку сроки окончания работ над остальными компонентами оптической системы постоянно отодвигались, а бюджет проекта рос. Графики работ, предоставляемые компанией, НАСА охарактеризовало как «неопределённые и изменяющиеся ежедневно» и отложило запуск телескопа до апреля 1985 года. Тем не менее, сроки продолжали срываться, задержка росла в среднем на один месяц каждый квартал, а на завершающем этапе росла на один день ежедневно. НАСА было вынуждено ещё дважды перенести старт, сначала на март, а затем на сентябрь 1986 года. К тому времени общий бюджет проекта вырос до 1,175 млрд долл.

Космический аппарат

Начальные этапы работ над космическим аппаратом, 1980

Другой сложной инженерной проблемой было создание аппарата-носителя для телескопа и остальных приборов. Основными требованиями были защита оборудования от постоянных перепадов температур при нагреве от прямого солнечного освещения и охлаждения в тени Земли и особо точное ориентирование телескопа. Телескоп смонтирован внутри лёгкой алюминиевой капсулы, которая покрыта многослойной термоизоляцией, обеспечивающей стабильную температуру. Жёсткость капсулы и крепление приборов обеспечивает внутренняя пространственная рама из углепластика.

Хотя работы по созданию космического аппарата проходили более успешно, чем изготовление оптической системы, «Локхид» также допустила некоторое отставание от графика и превышение бюджета. К маю 1985 года перерасход средств составил около 30 % от первоначального объёма, а отставание от плана - 3 месяца. В докладе, подготовленном Космическим центром Маршалла, отмечалось, что при проведении работ компания не проявляет инициативу, предпочитая полагаться на указания НАСА.

Координация исследований и управление полётом

В 1983 году, после некоторого противоборства между НАСА и научным сообществом был учреждён Научный институт космического телескопа. Институт управляется Ассоциацией университетов по астрономическим исследованиям (Association of Universities for Research in Astronomy ) (AURA) и располагается в кампусе университета Джонса Хопкинса в Балтиморе, штат Мэриленд. Университет Хопкинса - один из 32 американских университетов и иностранных организаций, входящих в ассоциацию. Научный институт космического телескопа отвечает за организацию научных работ и обеспечение доступа астрономов к полученным данным; эти функции НАСА хотело оставить под своим контролем, но учёные предпочли передать их академическим учреждениям.

Европейский координационный центр космического телескопа был основан в 1984 году в городе Гархинг, Германия для предоставления аналогичных возможностей европейским астрономам.

Управление полётом было возложено на Центр космических полётов Годдарда, который находится в городе Гринбелт, Мэриленд, в 48 километрах от Научного института космического телескопа. За функционированием телескопа ведётся круглосуточное посменное наблюдение четырьмя группами специалистов. Техническое сопровождение осуществляется НАСА и компаниями-контакторами через Центр Годдарда.

Запуск и начало работы

Старт шаттла «Дискавери» с телескопом «Хаббл» на борту

Первоначально запуск телескопа на орбиту планировался на октябрь 1986 года, но 28 января приостановила программу «Спейс шаттл» на несколько лет, и запуск пришлось отложить.

Всё это время телескоп хранился в помещении с искусственно очищенной атмосферой, его бортовые системы были частично включены. Расходы на хранение составляли около 6 млн долл. в месяц, что ещё больше увеличило стоимость проекта.

Вынужденная задержка позволила произвести ряд усовершенствований: солнечные батареи были заменены на более эффективные, был модернизирован бортовой вычислительный комплекс и системы связи, а также изменена конструкция кормового защитного кожуха с целью облегчить обслуживание телескопа на орбите.Кроме того, программное обеспечение для управления телескопом было не готово в 1986 году и фактически было окончательно написано только к моменту запуска в 1990 году.

После возобновления полётов шаттлов в 1988 году запуск был окончательно назначен на 1990 год. Перед запуском накопившаяся на зеркале пыль была удалена при помощи сжатого азота, а все системы прошли тщательное тестирование.

Подробно:

11 августа 2008г орбитальный телескоп Hubble завершил свой 100-тысячный оборот вокруг земного шара. Аппарат был выведен на околоземную орбиту 24 апреля 1990 г. За 18 лет с его помощью удалось сделать массу открытий, многие из которых стали настоящей революцией в астрономии. А на октябрь 2008 года запланирована сервисная миссия, которая должна продлить жизнь телескопа и улучшить его возможности.

11 мая 2009 года с космодрома на мысе Кана́верал стартовал космический челнок Атлантис с семью членами экипажа на борту. Это последняя миссия, направленная на ремонт поврежденного орбитального телескопа Хаббл. 11-дневный план полета экипажа Атлантиса включает пять выходов в открытый космос для ремонта Хаббла с использованием современных научных инструментов, специально разработанных для того, чтобы отремонтировать и усовершенствовать телескоп, продлив срок его службы ещё как минимум до 2014 года .

В апреле 2015 года легендарный телескоп, на́званый в честь Эдвина Хаббла (1889-1953), отметил свое двадцатипятилетие на околоземной орбите.

ПРОЕКТ КОСМИЧЕСКОГО ТЕЛЕСКОПА ИМЕНИ ХАББЛА

В двадцатом веке астрономы сделали много шагов в изучении вселенной. Эти шаги были бы невозможны без использования больших и сложных телескопов, расположенных на высокогорных лабораториях и управляемых большим количеством квалифицированных специалистов. С выводом на орбиту ТЕЛЕСКОПА ИМЕНИ ХАББЛА (HUBBLE SPACE TELESCOPE - HST ), астрономия сделала гигантский рывок вперед. Будучи расположенным за пределами земной атмосферы, HST может фиксировать такие объекты и явления, которые не могут быть зафиксированы приборами на земле.

Проект HST был разработан в НАСА при участии Европейского Космического Агентства (ESA). Этот телескоп-рефлектор, диаметром 2,4 м (94,5 дюйма), выводится на низкую (610 километров или 330 морских миль) орбиту с помощью американского корабля СПЕЙС ШАТТЛ (SPACE SHUTTLE ). Проект предусматривает периодическое техническое обслуживание и замену оборудования на борту телескопа. Проектный срок эксплуатации телескопа - 15 и более лет.

ИНСТИТУТ КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ С ПОМОЩЬЮ ТЕЛЕСКОПОВ

НАСА основало институт космических исследований с помощью телескопов (Space Telescope Science Institute - STScI) для проведения широкого спектра глобальных научных исследований с помощью телескопа имени Хаббла. STScI - большой исследовательский центр, где опытные специалисты постоянно наблюдают за работой телескопа. Эти специалисты также помогают астрономам в составлении планов наблюдений. В задачу STScI также входит предоставление астрономам необходимого программного обеспечения и технических средств для наблюдений.

Чтобы сделать наблюдения с помощью телескопа имени Хаббла как можно более эффективными, STSiC модернизировал наземные системы обслуживания наблюдений. Большая часть процесса планирования наблюдений была автоматизирована с использованием "интеллектуального" оборудования и программного обеспечения. STSiC составил каталог более 20 миллионов звезд для облегчения поиска объектов наблюдения, а также разработал пакет прикладных программ, предназначенный помочь астроному в обработке данных, получаемых с борта HST. Каждый день STSiC получает расшифровывает, обрабатывает и накапливает огромное количество информации, поступающей с борта HST, а также рассылает её своим клиентам.

STSiC подчиняется Ассоциации Университетов по Исследованиям в Области Астрономии (the Association of Universities for Research in Astronomy, Inc - AURA ). Сам институт расположен в университетском городке Хомвуд (университет имени Джона Хопкинса) в Балтиморе.

КТО ИСПОЛЬЗУЕТ ТЕЛЕСКОП ИМ. ХАББЛА?

В отличие от других научных проектов, HST не используется исключительно отдельной группой специалистов, разработавших данный телескоп, или группой астрономов из одной лаборатории или института; в принципе, любой человек может провести свое наблюдение при помощи HST.

Для проведения наблюдений с помощью HST, астроном должен прислать в STSiC запрос с изложением научного обоснования невозможности проведения данного наблюдения в земных условиях и описание предполагаемой программы наблюдений. Запрос передается в одну из комиссий при STSiC по разным разделам астрономии. Каждый год эти комиссии предоставляют ранжированные списки с предложениями по проведению наблюдений в Комитет Распределения Времени исследований с помощью телескопа (Telescope Allocation Committee - TAC ). Задача комитета - составить проект сбалансированной программы наблюдений для HST. Последнее слово в утверждении этой программы принадлежит главе STScI.

На каждом этапе рассмотрения проект оценивается по разным критериям. Какова́ научная ценность знаний, которые будут получены в результате исследований, и сколько средств и времени для этого необходимо истратить? Достигнуты ли пределы в исследовании данного объекта наземными приборами? Насколько вероятен успех исследований? Кроме чисто научных вопросов, проверяется также физическая возможность HST наблюдать данный объект/явление, временные и другие требования к телескопу и его ресурсам.

КОМПЬЮТЕРИЗИ-РОВАННЫЕ НАБЛЮДЕНИЯ В КОСМИЧЕСКИЙ ВЕК

Вся наблюдения с использованием HST должны быть предварительно тщательно и точно спланированы, так как все наблюдения проводятся автоматически с помощью компьютеров на борту телескопа. После поступления всех команд на борт HST, телескоп работает в автоматическом режиме, без связи с Землей. Поиск объекта, подстройка приборов, собственно наблюдения и др. осуществляются исключительно бортовыми компьютерами. Так как HST делает один виток вокруг Земли за 95 минут, объекты наблюдения слишком быстро появляются и исчезают, чтобы можно было применить дистанционное управление с Земли без потери скорости и эффективности наблюдений. Для увеличения эффективности сеансы наблюдений из разных программ чередуются между собой. Таким образом подавляющее большинство программ требуют не один виток для своего полного завершения.

ВОЗМОЖНОСТИ ТЕЛЕСКОПА

На борту HST находятся: две камеры, два спeктро́грофа, фотометр, астрода́тчики. Вследствие того, что телескоп находится за пределами атмосферы, эти приборы позволяют:

1) Фиксировать изображения объектов с очень высоким разрешением. Наземные телескопы редко дают разрешение, больше одной угловой секунды. В любых условиях HST дает разрешение в одну десятую угловой секунды.
2) Обнаруживать объекты малой светимости. Самые большие наземные телескопы редко обнаруживают объекты слабее 25 звездной величины. HST может обнаруживать объекты 28 звездной величины, что почти в 20 раз меньше.
3) Наблюдать объекты в ультрафиолетовой части спектра. Ультрафиолетовый диапазон составляют важнейшую часть спектра горячих звезд, туманностей и других мощных источников излучения. Атмосфера Земли поглощает большую часть ультрафиолетового излучения и поэтому оно не доступно для наблюдения (HST может также наблюдать объекты в инфракрасной части спектра, однако чувствительность в этой части спектра пока мала. После установки новых приборов через несколько лет после запуска, она резко возрастет).
4) Фиксировать быстрые изменения интенсивности света, что невозможно в земных условиях из-за изменения прозрачности атмосферы в момент наблюдений.

ПРИБОРЫ И ОПТИЧЕСКИЕ СИСТЕМЫ

HST имеет на борту зеркало Ричи-Кретиена диаметром 94,5 дюйма (2,4 м). Оптические датчики регистрируют излучение в диапазоне от 1160 Aнгстрем (ультрафиолетовое излучение) до 11000 Aнгстрем (инфракрасное излучение). Все наблюдательные приборы телескопа могут регистрировать излучение в ультрафиолетовом диапазоне. Все приборы, кроме спектрографа высокого разрешения, могут регистрировать излучение в видимой части спектра. Первичные инструменты, установленные на борту телескопа, не могут регистрировать излучение в инфракрасном диапазоне (хотя планетарная камера регистрирует излучение в диапазоне, близком к инфракрасному). Всё бортовое оборудование телескопа получает энергию от двух панелей солнечных батарей или от аккумуляторов (во время нахождения в тени́ Земли).

ЧЕГО НЕ МОЖЕТ КОСМИЧЕСКИЙ ТЕЛЕСКОП ИМЕНИ ХАББЛА

1) HST не может наблюдать объекты и явления на Земле, так как его система поиска объектов и чувствительность приборов рассчитаны только для наблюдений за космическими объектами.
2) HST не может наблюдать за Солнцем и освещенной частью Луны, так как они слишком яркие.

Специалисты, следящие за выполнением научной программы исследований, не должны допускать таких наблюдений, которые могут "ослепить" телескоп. В случае ошибки компьютера или человека, когда возникает такая угроза, HST автоматически закрывает отверстие наблюдения специальной дверкой и выключает все наблюдательные приборы. С помощью HST можно наблюдать лунные затмения, соблюдая необходимые меры предосторожности. Затмения Солнца Землей позволяют наблюдать Венеру, Меркурий и другие объекты с малым угловым расстоянием до Солнца, в течение нескольких минут. Вышеперечисленные ограничения могут не учитываться заказчиком при составлении своего проекта программы наблюдений, т.к. все они учитываются автоматически компьютером при составлении общего расписания наблюдений для HST.

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!

В апреле 2015 года легендарный телескоп, названый в честь Эдвина Хаббла (1889-1953), отметил свое двадцатипятилетие на околоземной орбите. Никто не скрывает, что за эти годы приходилось неоднократно «лечить» аппарат, восстанавливать и совершенствовать его. Однако все труды были не напрасны и теперь даже школьники знают, где находится телескоп Хаббл.

Этот каждые девяносто минут облетает всю Землю на высоте около шестисот километров над уровнем моря. Его основной задачей является фотографирование всего, что попадает в поле его зрения. А попадает многое. Так за время его работы на Землю было передано свыше 700 000 снимков. Трудно сосчитать, сколько научных статей и сколько открытий было сделано благодаря Хабблу!

Космический художник

Первые успехи аппарата были не впечатляющие. Снимки приходили на Землю размытые и не производили впечатления. Это было вызвано дефектом зеркала, который впрочем, через некоторое время был исправлен астронавтами. После первого ремонта было проведено еще несколько. Хаббл совершенствовался и оснащался новым оборудованием.

Его глаз становился все зорче и зорче. И теперь там, где находится знаменитый , нет более точного и внимательного наблюдателя за всеми изменениями, которые происходят во Вселенной.

Снимки телескопа оказываются на редкость красивыми и художественными. Во Вселенной, как выяснилось, много света и цвета. Кроме того, с помощью оттенков, зафиксированных на снимках, ученые смогли установить химические вещества, содержащиеся во многих образованиях, новорожденных звездах, галактиках. Внутри каждой галактики есть гигантская черная дыра, Вселенная постоянно ускоряется, и это все мы знаем благодаря Hubble Space Telescope, запущенному в 1990 году.

Интересно то, что удалось заглянуть так далеко, что стало видно рождение новых звезд на расстоянии 6,5 тысяч световых лет. Процесс запечатлен в мельчайших деталях. Фотографии настолько оригинальны, что поражают мышление любого.

И в честь этого даже был устроен симфонический концерт. Таким образом, телескоп в космосе намного раздвинул границы возможностей человека и еще раз позволил убедиться в нашей хрупкости.

Авторы и создатели

Этот уникальный аппарат разрабатывался Европейским Космическим Агентством совместно с NASA. Всего на него уже потрачено 6 миллиардов долларов. Первоначально телескоп должен был быть запущен в космос на 4 года раньше, но произошедшая катастрофа с Челленджером отодвинула этот срок. Программа создания, запуска и дальнейшего обслуживания предусматривала ремонт аппарата каждые 5 лет.

Однако поврежденное зеркало, из-за которого снимки были сначала нечеткими, натолкнуло на мысль, что ремонт нужно осуществлять непосредственно на орбите. И в 1993 году зеркало было исправлено, аппарат получил дополнительное оснащение и стал работать еще лучше.

При таком положении вещей, учитывая, где находится знаменитый телескоп Хаббл, и его безупречную работу, он продержится еще 5 лет, а может и больше. Вывести его из строя может лишь какая-нибудь катастрофа. Хотя замена Хабблу уже готова. Это более точный и чувствительный аппарат Webb Space Telescope.

Помощник в исследовании космоса

Хаббл позволил решить проблему с изучением электромагнитного излучения. Он регистрирует его в инфракрасном излучении. Это делают и наземные телескопы. Однако Хаббл оказался эффективнее в десять раз. Поскольку там, где находится телескоп Хаббл больше возможностей.

Хаббл — достаточно небольшой аппарат, его диаметр чуть больше четырех метров. Солнечные батареи раскинулись на 2 метра в ширину. А вот длина составляет 13 метров. При таких небольших, казалось бы, габаритах, вес аппарата внушительный. Весь телескоп имеет без учета аппаратуры 11 тысяч килограммов, и еще 1,5 тысячи — это приборы.

Обслуживание телескопа полностью лежит на плечах астронавтов. Планируемые ранее ремонты со спуском на Землю могли привести лишь к его повреждениям и деформациям. Всего было осуществлено 4 выхода в открытый космос для ремонта Хаббла.

Оценить работу, которую проделал телескоп в космосе, просто невозможно. Благодаря ему, мы видим снимки Плутона, стали свидетелями столкновения Юпитера с кометой Шумейкеров-Леви, знаем возраст самой Вселенной. По данным ученых ее возраст приближается к четырнадцати миллиардам лет. Кроме того, специалисты с уверенностью заявляют об однородности Вселенной, об ускорении процессов, происходящих в ней, и многое другое.

– это древняя резиденция китайских императоров, сегодня превратившаяся в огромный музей. В настоящее время город называется просто Гугун или Бывший дворец. Это самый большой дворцовый комплекс на свете.

Он находится немного севернее площади Тяньаньмэнь и считается главной культурной и исторической достопримечательностью и всего . Сюда ежегодно приходят и приезжают туристы со всех концов света.

Главный дворец Запретного города стал резиденцией императора с момента постройки, т.е. с начала XV столетия. В те времена в царствовала династия Мин. А прекратил ею быть в 1912 году, когда свергли последнего императора династии Цин.

Строился дворец около 15 лет. В его возведении участвовали лучшие архитекторы, зодчие, мастера каменных дел, художники и миллионы простых безвестных строителей. Строительство осуществлялось из драгоценных пород деревьев и дорогих материалов.

В Запретном городе жил император с семьей и слугами. Никто иной под страхом смертной казни сюда не допускался. Дворцовый комплекс обнесён мощными стенами и широким рвом, наполненным водой.

Всего за все время империи в этом городе жили 24 императора династии Мин и Цин. Здесь проводились все значимые церемонии, это был политический центр Великой Минской империи и Империи Цин.

В 1912 году последний император из Цинской династии по имени Пу И был свергнут, но ему разрешили продолжать жить во Внутреннем дворце. А во Внешнем дворце был организован музей. Несколько лет спустя, Пу И был изгнан из своего дворца.

В 30-е годы прошлого столетия, когда Япония напала на Китай и захватила Пекин, драгоценности дворца пришлось спешно вывозить. Значительная их часть была захвачена японцами, но из уважения к бывшему императору сохранена.

Больше всего ущерба этому объекту принесла Культурная революция. В 50-60 годы XX века здесь были разрушены некоторые артефакты. Однако вандализм был прекращен, около Гугуна были выставлены армейские батальоны для защиты культурного наследия.

За весь период своего существования до того, как в 1925 году стать музеем, Запретный город претерпел множество изменений. Он постоянно расстраивался и укреплялся, в него вкладывались огромные деньги.

Весь комплекс дворцов – это образец китайской традиционной дворцовой архитектуры. В конце 80-х прошлого века он первым в Китае вошел в известный список ЮНЕСКО, как самое большое древнее деревянное строение.

Запретный город сегодня

Запретный город – центр древнего Пекина, который называется Имперский город. Сам Гугун разделен на несколько частей, окружен стеной длиной в 3,4 км и высотой почти 8 м и рвом, ширина которого составляет более 50 м.

С трёх его сторон произрастают великолепные императорские сады и знаменитые парки. Южнее от Гугуна расположено Святилище, где все без исключения императоры Китая поклонялись духу нации и своим предкам.

Также на юг находятся Ворота Небесного Спокойствия с портретом отца народа – Мао Цзэдуна. Эти ворота – связующее звено между древним Гугуном и современной площадью Тяньаньмэнь.

Весь дизайн этого прекрасного архитектурного шедевра наполнен символами китайской религии и философии, а также подчеркивает величие императорской власти и ее прямую связь с небесами. Планировка соответствует старинным традициям.

Этот дворцовый комплекс – настоящее чудо света, о котором рассказано в книгах и фильмах. В 1918 году о нем рассказывалось в одном из первых китайских художественных фильмов, в биографическом фильме о последнем императоре Пу И, сериале про Марко Поло и пр.

Современность

В настоящее время Запретный город посещают не менее 7 млн. туристов в год, особенно много их летом. Это наиболее известная китайская достопримечательность. Недавно Си Цзиньпин принимал Дональда Трампа во Внутреннем дворце.

 

Возможно, будет полезно почитать: